samedi 14 avril 2018
Mathématiques
Je me revois quarante années en arrière quand surgit dans nos écoles un évènement qui changea nos vies d' enseignants, un cataclysme.
J' en avais vaguement entendu parler par un collègue d' une ville voisine " Tu sais ce que c' est la théorie des ensembles ? - Non, aucune idée - On en parle beaucoup - Ah bon ! " . Et on en parla de plus en plus si bien que j' achetai une publication toute neuve qui m' expliqua par le détail de quoi il s' agissait, remettre de l'ordre dans une maison un peu disparate, reconsidérer la structure des nombres, savoir de quoi on parle et faire avec des mathématiques de la mathématique.
Et j' étais à peu près prêt quand le tsunami surgit dans les classes.Je fus convoqué au chef lieu du département ou en une journée j' eus droit à l' exposé à rapidité vertigineuse des nouvelles maths de la 6ème à la terminale. On peut appeler ça une formation très accélérée. On se regardait entre collègues ce qui signifiait " tu suis encore ou t' es largué ?"
Une autre fois, convoqué encore, à mon avis pour un complément de formation au cas où je n' aurais pas tout saisi, non, je compris qu' on me demandait d' être à mon tour formateur vers les instituteurs de mon canton.
On s' habitue à tout et j' entrai dans la danse. Finalement ce n' était pas la mer à boire, cependant, en particulier la géométrie prit un tout nouvel aspect. Jusque là, on faisait confiance à Euclide qui avait dit que la droite est le plus court chemin d' un point à un autre, mais demandons au GPS quel est le plus court chemin pour arriver à la destination des vacances, il va faire des histoires avec ou non les autoroutes, en privilégiant le plus court en temps ou en kilomètres, avec ou sans radars, ringard le Euclide, ça avait besoin d' un sérieux coup de torchon.
Je viens de rouvrir mon premier livre de mathématiques modernes ou de mathématique moderne au singulier destiné aux élèves de la classe de quatrième en 1971 (Editions Bordas) et je lis (page 154): Définitions : Nous appelons droite affine-euclidienne (sans lui demander son autorisation à Euclide) tout ensemble (D) de points (jusque là d' accord, ensuite ça se corse) auxquels est associée une famille F de bijections de (D) dans R (pas dans l' air) dans l' ensemble R des nombres réels( que vous connaissez certainement très bien, merci de me le confirmer) telle que 1. si f et g sont deux éléments de F, il existe un nombre réel a satisfaisant à : quel que soit M appartenant à (D) g(M) = f(M) + a ou bien quel que soit M appartenant à (D) g(M) = - f(M)+ a 2. inversement si f est un élément particulier de F et a un nombre réel (un vrai ! pas un imaginaire car il existe des nombres imaginaires, allez voir sur Wikipédia) les bijections obtenues par les formules (I) et (II) appartiennent à F. Nous appelons distance de deux points A et B d' une droite euclidienne le nombre positif valeur absolue de f(A) - f(B), f étant une quelconque des bijections de F.
Et voilà - pauvre Euclide et sa définition simpliste.
Ainsi définie vous pouvez être certain que notre ligne droite reste droite dans toutes les courbures de l' espace-temps, sans se recouper sinon adieu la bijection ! je n' en suis quand même pas sûr lors de soirs de fête trop bien arrosés
Voilà, j' ai tout dit. j' ajoute que la consommation d' aspirine à l' époque a vite augmenté dans le corps enseignant) les élèves quant à eux, ils veulent bien tout ce qu' on leur dit, pas contrariants. Un ou deux de mes élèves semblaient avoir compris ce que ça voulait dire, les autres je ne sais pas ils s' étaient endormis avant la fin de la démonstration, moi aussi j' avais un peu compris, bien obligé puisque je l'enseignais mais je n' en suis pas tout à fait sûr. J' ignore ce que tout ça est devenu, je suis un retraité très réel comme l' ensemble R (des nombres "réels" ) et j' ai bien mérité ma retraite.
Inscription à :
Publier les commentaires (Atom)
Aucun commentaire:
Enregistrer un commentaire